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Abstract

A Green’s function approach for precisely computing the temperature and the three components of the heat flux in a

rectangular parallelepiped is presented. Each face of the parallelepiped may have a different, but spatially uniform,

boundary condition. Uniform volume energy generation is also treated. Three types of boundary conditions are in-

cluded: type 1, a specified temperature; type 2, a specified flux; or type 3, a specified convection boundary condition. A

general form of the Green’s function covering all three types of boundary conditions is given. An algorithm is presented

to obtain the temperature and flux at high accuracy with a minimal number of calculations for points in the interior as

well as on any of the faces. Heat flux on type 1 boundaries, impossible to evaluate with traditional Fourier series, is

found by factoring out lower-dimensional solutions. A numerical example is given. This research and resulting com-

puter program was part of a code verification project for Sandia National Laboratories. � 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Although numerical methods and powerful comput-

ers are increasingly important in heat conduction, exact

solutions still have a role to play. They provide insight

into various heat conduction processes. They can be used

to assess numerical accuracy and to provide verification

of complex numerical programs. For verification, highly

accurate solutions for transient three-dimensional prob-

lems are particularly important. Although some exact

solutions are available in standard references, there are

few three-dimensional cases available. Further, accu-

rately evaluating these solutions can require many terms

from double or triple series.

This paper addresses steady heat conduction in the

rectangular parallelepiped by the method of Green’s

functions. The steady work is important because in

many transient solutions, a poorly converging steady-

state series term appears [1, p. 185], and an improve-

ment in the convergence speed of this steady term can

improve the accuracy of the transient solution. The

steady solution can also serve as an independent check

on the transient solutions evaluated at large values of

time.

In the method of Green’s functions, the boundary

value problem for the temperature is restated into an

integral expression that involves the known boundary

conditions and the Green’s function (GF). The method

of GF is especially advantageous for three-dimensional

problems such as the parallelepiped.

The pertinent GF literature is summarized next.

Several books give a good overview of the GF method

[1–4]. Two books by Butkovskii [5,6] contain many GF

organized according to the type of differential equation.

The differential equations are categorized according to a
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number system for the number of spatial dimensions, the

order of the highest time derivative, and the order of the

highest spatial derivative. Although Butkovskii’s num-

ber system clearly distinguishes different equations, there

are no subdivisions for the various coordinate systems

and boundary conditions. Beck et al. [7] give extensive

tables of GF for heat conduction and diffusion. The GF

are organized with a number system for the number of

spatial dimensions, the type of coordinate system, and

the type of boundary conditions. Most of the book is

devoted to transient heat conduction. Few steady GF,

and only one parallelepiped example are given.

Melnikov [8,9] discusses GF for a variety of two-

dimensional geometries, including steady heat con-

duction in Cartesian and cylindrical coordinates. No

three-dimensional geometries are treated. Fourier series

expansions along one coordinate direction are used to

produce single-sum series for the GF. Most importantly,

the slowly converging portions of the series for the GF

are identified and replaced with closed-form expressions.

Marshall [10] derives Laplace-equation GF for the

parallelepiped applied to electrostatic potential prob-

lems. Expressions for the GF associated with type 2

(zero-flux) boundaries are given. Although the conver-

gence behavior of the GF is explored with numerical

examples, only the point-charge solution is discussed.

There is no discussion of distributed sources on the in-

terior or on the boundaries.

Recent work by the second author in a two-dimen-

sional rectangle [11] involved the method of GF to ob-

tain fast-converging expressions for the temperature and

heat flux. The present paper is an extension of these

methods to the parallelepiped.

The contribution of this paper is fourfold. First, GF

for the rectangular parallelepiped are given for any

combination of boundaries of types 1, 2, and 3. Second,

the important concept of alternative GF is discussed as a

means to improve the numerical behavior of the GF

method; many alternative GF are given. Third, series

convergence is improved by factoring out lower-dimen-

sional solutions. Fourth, an algorithm is presented for

efficient, high-accuracy computation of temperature and

heat flux in the parallelepiped. This algorithm is part of

a code verification project carried out for Sandia Na-

tional Laboratories.

The remainder of this paper is divided into sections.

First the boundary value problem for the temperature is

stated, and then the solution with the method of GF is

formally stated. The GF itself is next defined and its

convergence behavior is explored. The algorithm for

efficient computation of the temperature and heat flux is

given, along with numerical examples. The GF for the

parallelepiped are also available on an internet site de-

voted to the GF method.

2. Boundary value problem for temperature

The temperature in the parallelepiped with constant

and isotropic material properties is governed by the

boundary value problem

r2T ¼ � g
k
; 0 < xr < Lr; r ¼ 1; 2; 3; ð1Þ

ki
oT
oni

þ hiT ¼ fi; i ¼ 1; 2; . . . ; 6: ð2Þ

Nomenclature

B Biot Number

C controlling factor, Eq. (34)

fi non-homogeneous boundary value, side i

g energy generation, W=m2

G Green’s function, m�1, Eq. (10)

h heat transfer coefficient, W=ðm2 KÞ
k thermal conductivity, W/(m K)

Li ith parallelepiped dimension, m
ni outward normal on side i
N norm, Eq. (12)

Pnp kernel function, Eq. (15)

q heat flux, W=m2

Sm coefficient, Eqs. (17) and (18)

t time, s

T temperature, K

V defined in Eq. (25)

xi Cartesian coordinate

X eigenfunction, Eq. (11)

Subscripts

i; j; k indices

n; p summation indices, Eq. (10)

‘;m indices for eigenvalues, Eq. (11)

r index for direction

1D one-dimensional

Greek symbols

a thermal diffusivity, m2=s
b eigenvalue, Eq. (14)

dij Kronecker delta

dðxi � x0iÞ Dirac delta function
H temperature scale, Eq. (33)

k eigenvalue, Eq. (11)

v generalized eigenfunction, Eq. (32)
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The subscripts on k; n; h, and f in Eq. (2) denote corre-

spondence to sides of the parallelepiped as given in

Table 1. Throughout this paper the sides of the paral-

lelepiped will be referenced using the same convention.

The boundary conditions, given by Eq. (2), can be of

three different types: for type 1, ki ¼ 0; hi ¼ 1, and fi is a
specified temperature; for type 2, ki ¼ k, hi ¼ 0, and fi is
a specified heat flux; and for type 3, ki ¼ k; hi ¼ h, and
fi is a specified product of the convection coefficient and
the ambient temperature.

3. Solution in terms of the Green’s function

In this section the temperature is found in terms

of the GF by splitting the problem into seven sub-

problems, one for each non-homogeneous boundary and

one for internal generation. By superposition the solu-

tion can be written as

T ¼ T0 þ T1 þ T2 þ T3 þ T4 þ T5 þ T6; ð3Þ

where T0 satisfies the original partial differential equa-
tion, Eq. (1), and homogeneous boundary conditions.

For j 6¼ 0; Tj satisfies the homogeneous partial differen-
tial equation corresponding to Eq. (1), the non-homo-

geneous boundary condition T satisfies on side j, and the

associated homogeneous boundary conditions T satisfies

on the remaining sides. Explicitly,

r2Tj ¼ � g
k

d0j; 0 < xr < Lr; r ¼ 1; 2; 3; ð4Þ

ki
oTj
oni

þ hiTj ¼ fidij; i ¼ 1; 2; . . . ; 6; ð5Þ

where dij is the Kronecker delta function and j ¼
0; 1; . . . ; 6.
Rather than solve for Tj directly for every value of j,

we have chosen to use the symmetry of the parallelepi-

ped to streamline the algorithm as follows. For j ¼ 0; 1
we solve for Tj as defined above. For j ¼ 2; 3; . . . ; 6 the
coordinate system may always be rotated so that the

non-homogeneous side is at x1 ¼ 0. If ðx1; x2; x3Þ is
the original point at which the temperature is desired,

the corresponding coordinates for the rotations used are

given in Table 2.

Therefore, through superposition and rotation only

internal generation problems and problems with non-

homogeneities at x1 ¼ 0 need to be considered. Drop-
ping the subscript j, the solution to Eqs. (4) and (5) in

terms of the Green’s Function, G, defined later, is given

by

T ðxÞ ¼

g
k

R
v Gðx jx0Þ dv0 if internal generation;

f1
R
s1

oGðx j x0Þ
ox0
1

����
x0
1
¼0
ds01

if s1 is non-homogeneous of type 1;
f1
k

R
s1
Gðx jx0Þ

��
x0
1
¼0 ds

0
1

if s1is non-homogeneous of type 2 or 3;

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

where x ¼ ðx1; x2; x3Þ and x0 ¼ ðx01; x02; x03Þ. The integral
for volume generation is over the volume of the paral-

lelepiped, while the integrations for non-homogeneous

type 1, type 2 or type 3 boundary conditions on side 1

are surface integrals over side 1, that is dv0 ¼ dx01 dx02 dx03
and ds01 ¼ dx02 dx03.
Using Fourier’s law, the three components of heat

flux are

qxm ¼ �k oT
oxm

; m ¼ 1; 2; 3: ð7Þ

Because of the use of superposition and coordinate

system rotations, care must be taken when calculating

the heat flux in the original coordinates. Table 3 gives

the correspondence between the components of heat flux

in the rotated coordinates to the components of heat flux

in the original coordinates depending on which original

side is non-homogeneous.

Table 1

Side numbering

i Side

1 x1 ¼ 0
2 x1 ¼ L1
3 x2 ¼ 0
4 x2 ¼ L2
5 x3 ¼ 0
6 x3 ¼ L3

Table 2

Rotation of coordinates to place heated face at x1 ¼ 0
Heated side Replace x1 by Replace x2 by Replace x3 by

0a or 1 – – –

2 L1 � x1 L2 � x2 –

3 x2 L1 � x1 –

4 L2 � x2 x1 –

5 x3 – L1 � x1
6 L3 � x3 – x1
aHeating at ‘‘side 0’’ is internal generation.

Table 3

Rotated and original heat flux components

Heated side Rotated qx1 is Rotated qx2 is Rotated qx3 is

0 or 1 qx1 qx2 qx3
2 �qx1 �qx2 qx3
3 qx2 �qx1 qx3
4 �qx2 qx1 qx3
5 qx3 qx2 �qx1
6 �qx3 qx2 qx1
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4. Definition of the Green’s function

In this section the Green’s function needed for the

temperature solution is defined. The GF for the paral-

lelepiped is the response at location ðx1; x2; x3Þ caused by
a point source of heat at ðx01; x02; x03Þ. The GF satisfies the
boundary value problem:

o2G
ox21

þ o2G
ox22

þ o2G
ox23

¼ �dðx1 � x01Þdðx2 � x02Þdðx3 � x03Þ;

0 < xr < Lr; r ¼ 1; 2; 3; ð8Þ

ki
oG
oni

þ hiG ¼ 0 for faces i ¼ 1; 2; . . . ; 6; ð9Þ

where d is the Dirac delta function and the homoge-
neous boundary conditions are the same type on each

face as in the temperature problem, Eq. (2).

The GF may be written in the form

Gðx jx0Þ ¼
X1
p¼0

X1
n¼0

XnðxkÞXnðx0kÞ
NðkknÞ

�
XpðxjÞXpðx0jÞ
NðkjpÞ

Pnpðxi; x0iÞ; ð10Þ

where ði; j; kÞ is some permutation of ð1; 2; 3Þ, each
X‘ðxmÞ is an eigenfunction, k is an eigenvalue, and each
Pnpðxi; x0iÞ is a kernel function. Note that the permutation
ði; j; kÞ relates to the directions chosen for the kernel
function and eigenfunctions in the rotated coordinate

system which was introduced earlier for the temperature.

The double-sum form of the GF is important because

it suggests six alternative series for each GF depending

on the permutation of ð1; 2; 3Þ used for (i; j; k). There is
also a triple-sum form of the steady GF whose poor

convergence behavior [7, p. 195] is well known. We will

see later that the alternate forms are very important for

finding a fast-converging series for the temperature. In

the remainder of this section the eigenfunctions and

kernel functions will be discussed for any combination

of boundary condition types. To organize all of these

combinations, a numbering system is needed.

4.1. Numbering system

In all there are 729 different combinations of

boundary condition types for the parallelepiped, each

with its own GF. Each GF has six possible forms (given

explicitly later) for a total of 4374 different summations

that could be used to calculate the temperature (or heat

flux). There are, however, only nine eigenfunctions and

nine kernel functions. Each summation for temperature

(or heat flux) consists of a different combination of these

18 basic functions, their integrals, or their derivatives.

The particular eigenfunctions or kernel function needed

is determined by the boundary conditions on the faces

perpendicular to their directions. Therefore, a number-

ing system is used to identify each function.

For eigenfunctions, the designation XIJ is used to
identify the eigenfunction in the xm direction with a
boundary condition of type I ¼ 1; 2, or 3 at xm ¼ 0 and a
boundary condition of type J ¼ 1; 2, or 3 at xm ¼ Lm.
For example X12 represents eigenfunctions placed in the
xm direction with a boundary condition of type 1 at
xm ¼ 0 and a boundary condition of type 2 at xm ¼ Lm.
For kernel functions, a similar system is used. The des-

ignation PIJ (I ; J ¼ 1; 2, or 3) is used to denote the
kernel function in the xi direction with a boundary
condition of type I at xi ¼ 0 and a boundary condition
of type J at xi ¼ Li. Note in this numbering system, al-
though it is related to the numbering system for GF [7,

Chapter 2], the coordinate direction is not given ex-

plicitly since any of the eigenfunctions or kernel func-

tions could be placed in any direction and which

function is used depends on the type of boundary con-

ditions, not the particular direction.

4.2. Eigenfunctions

The eigenfunctions in Eq. (10), X‘ðxmÞ, satisfy the
ordinary differential equations

X 00
‘ ðxmÞ þ k2m‘X‘ðxmÞ ¼ 0; ð11Þ

where kml are the eigenvalues. The boundary conditions
are the same as those satisfied by the GF at xm ¼ 0 and
xm ¼ Lm. Additionally, each norm, Nðkm‘Þ, is chosen
such that

X1
‘¼0

X‘ðxmÞX‘ðx0mÞ
Nðkm‘Þ

¼ dðxm � x0mÞ: ð12Þ

There are nine possible different eigenfunctions de-

pending on the type of boundary conditions on the faces

perpendicular to the direction xm. All of the eigenfunc-
tions are linear combinations of sines and cosines and

are given along with their norms and their eigenvalues or

eigenconditions in Table 4. The sum in Eq. (12) only

begins at zero if both boundaries are of type 2. In this

case, km0 ¼ 0, otherwise all of the eigenvalues are real
and positive.

4.3. General kernel function

With the above choices for X‘ðxmÞ and Nðkm‘Þ, the
kernel function Pnpðxi; x0iÞ must satisfy

d2Pnp
dx2i

� b2npPnp ¼ �dðxi � x0iÞ; ð13Þ

where bnp is given by

bnp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2kn þ k2jp

q
: ð14Þ
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The kernel function, suppressing the np subscript, may
be written as

P ðxi; x0iÞ ¼
S�J ðS�I e�bð2Li�jxi�x0i jÞ þ SþI e�bð2Li�xi�x0iÞÞ

2bðSþI SþJ � S�I S�J e�2bLiÞ

þ S
þ
J ðSþI e�bðjxi�x0i jÞ þ S�I e�bðxiþx0iÞÞ
2bðSþI SþJ � S�I S�J e�2bLiÞ

; ð15Þ

where the indices I and J are just the numbers of the

sides perpendicular to the xi direction and are given by

I ¼ 2i� 1; J ¼ 2i ð16Þ

while the parameters SþM and S
�
M depend on the bound-

ary conditions on side M and are given by

SþM ¼
1 if side M is type 1 or type 2;

bLi þ BM if side M is type 3;



ð17Þ

S�M ¼
�1 if side M is type 1;

1 if side M is type 2;

bLi � BM if side M is type 3:

8<
: ð18Þ

Here BM ¼ LihM=k is the Biot Number for side M, where
k is the conductivity of the parallelepiped.

The expression for P in Eq. (15) is symmetric if xi and
x0i are interchanged and covers all nine possible bound-
ary condition combinations provided b 6¼ 0. A deriva-
tion of Eq. (15) is given in Appendix A.

4.4. Kernel functions for b ¼ 0

If all of the faces parallel to the kernel direction are of

type 2, then the zero eigenvalue exists. Provided the

boundary conditions on the faces perpendicular to the

direction of the kernel function are not also both of type

2, the kernel function must satisfy

o2P00
dx2i

¼ �dðxi � x0iÞ ð19Þ

as well as the boundary conditions at xi ¼ 0 and xi ¼ Li.
The nine kernel functions for this case are given in Table

5. In the table, I and J are as in Eq. (16) and the i

subscript has been dropped. The special case when all six

boundaries of the parallelepiped are of type 2 is covered

in the next section.

4.5. Special case: all type 2 boundary conditions

For the special case when all six boundaries are of

type 2, the usual GF does not exist and the usual GF

solution cannot be used to find the temperature. In this

section a pseudo GF is discussed that can be used in-

stead [4, Chapter 6].

In this case, the input data to the temperature

problem must satisfy a constraint – the sum of the

heat passing through the boundaries of the body must

be equal to the (negative of the) integral of the heat

Table 4

Eigenfunction, norm, and eigenvalues for nine required cases

(a) Eigenfunctions

Cases X‘ðxmÞ
X11, X12, and X13 sinðkm‘xmÞ
X21, X22, and X23 cosðkm‘xmÞ
X31, X32, and X33 km‘Lm cosðkm‘xmÞ þ BI sinðkm‘xmÞ

(b) Inverse norm and eigenvalues or conditions

Case Nðkm‘Þ�1 km‘ or eigencondition

X11 2=Lm ‘p=Lm
X12 2=Lm ð2‘� 1Þp=2Lm
X13a 2/m=Lm km‘Lm cotðkm‘LmÞ ¼ �BJ

X21 2=Lm ð2‘� 1Þp=2Lm
X22 2=Lm; km‘ 6¼ 0

1=Lm; km‘ ¼ 0
‘p=Lm

X23a 2/m=Lm km‘Lm tanðkm‘LmÞ ¼ BJ

X31 2=½ðkm‘LmÞ2 þ B2I þ BI  km‘Lm cotðkm‘LmÞ ¼ �BI
X32 2=½ðkm‘LmÞ2 þ B2I þ BI  km‘Lm tanðkm‘LmÞ ¼ BI
X33b 2Um=Lm tanðkm‘LmÞ ¼ ½km‘LmðBI þ BJ Þ=½ðkm‘LmÞ2 � BIBJ 

Here BI ¼ h2m�1Lm=k is the Biot number at xm ¼ 0 and BJ ¼ h2mLm=k is the Biot number at xm ¼ Lm. Index ‘ ¼ 1; 2; . . . for all cases
except X22 with ‘ ¼ 0; 1; 2; . . .
a/m ¼ ½ðkm‘LmÞ2 þ B2J =½ðkm‘LmÞ

2 þ B2J þ BJ .
bUm ¼ /m � ½ðkm‘LmÞ2 þ B2I þ BI/m.
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introduced by volume energy generation. This is equiv-

alent to satisfying an energy balance over the volume of

the parallelepiped. In addition, the solution is only un-

ique within an additive constant.

The pseudo GF, GPS, satisfies the following differ-
ential equation:

o2GPS
ox21

þ o2GPS
ox22

þ o2GPS
ox23

¼ �dðx1 � x01Þdðx2 � x02Þdðx3 � x03Þ þ
1

L1L2L3
: ð20Þ

If the pseudo GF is assumed to be in the same form as

the GF in Eq. (10) and the eigenfunctions are assumed

to satisfy Eqs. (11) and (12) then the kernel functions

Pnpðxi; x0iÞ for n and p not both zero satisfy Eq. (13) and

are given by Eq. (15). However, P00ðxi; x0iÞ, the kernel
function for b ¼ 0, must satisfy

d2P00
dx2i

¼ �dðxi � x0iÞ þ
1

Li
: ð21Þ

A solution for P00 is given by

P00ðxi; x0iÞ ¼
x2i þ ðx0iÞ

2
h i

=ð2LiÞ � x0i þ Li=3; xi < x0i;

x2i þ ðx0iÞ
2

h i
=ð2LiÞ � xi þ Li=3; x0i < xi:

8<
:

ð22Þ

This solution is only unique up to an additive constant.

The constant chosen, Li=3, causes the integral of P00 with
respect to x0i over ð0; LiÞ to be zero.
To find the temperature from the pseudo GF the

following integral equation must be used:

T ðxÞ ¼

f1
k

R
s1
GPSðx jx0Þ ds01

if side 1 is non-homogeneous;
g
k

R
v GPSðx jx0Þ dv0

if internal generation:

8>>>><
>>>>:

ð23Þ

This solution gives a spatial average temperature in the

parallelepiped of zero. If a different average temperature

is desired, simply add this average temperature to the

computed temperature at every point.

4.6. Internet site for Green’s functions

More information on the GF method is given in an

internet site called the Green’s Function Library (http://

www.engr.unl.edu/�glibrary). A variety of GF for other
geometries are available there for both steady and

transient heat conduction. The GF available in the GF

Library are organized by differential equation, coordi-

nate system, body shape, and type of boundary condi-

tions. The purpose of the GF Library is to provide wide

availability of Green’s Functions and to promote the

GF method.

5. Convergence

In this section the convergence behavior of the series

for the temperature is discussed. Of the six possible

forms of the GF, one resulting form of the temperature

expression will generally converge faster than the others

depending on the point of evaluation, the shape of the

parallelepiped, the type of boundary conditions, and

the thermal properties of the parallelepiped. To evaluate

the temperature and heat flux several additional func-

tions are needed. Depending on the type of problem

being solved and the direction chosen for the kernel

function, the additional functions include: either the in-

tegral from 0 to Li of the kernel function with respect to
x0i; the kernel function evaluated at x

0
i ¼ 0; or, the deriv-

ative of the kernel function with respect to x0i evaluated
at x0i ¼ 0. Next these additional functions are discussed
with respect to their impact on series convergence.

5.1. Solutions with an integral of the kernel function

In this section solutions containing an integral of the

kernel function are discussed. These arise from Eq. (6)

when the temperature (or heat flux) is caused by internal

generation or by a non-homogeneous boundary if the

kernel function is not placed in the x1-direction (i 6¼ 1).
Suppressing the np subscripts this integral is given byZ Li

0

Pðxi; x0iÞ dx0i ¼
1

b2
þ V ðb; xiÞ; ð24Þ

where

V ðb; xiÞ ¼
ðS�I � SþI ÞðS�J e�bð2Li�xiÞ þ SþJ e�bxiÞ
2b2ðSþI SþJ � S�I S�J e�2bLiÞ

þ ðS�J � SþJ ÞðS�I e�bðLiþxiÞ þ SþI e�bðLi�xiÞÞ
2b2ðSþI SþJ � S�I S�J e�2bLiÞ

: ð25Þ

Note that all the exponents are negative unless xi is lo-
cated on a boundary of type 1 or 3. Ignoring the 1=b2

Table 5

Kernel function for b ¼ 0
Case P00ðx; x0Þ for x > x0 (use P00ðx0; xÞ for x < x0)

P11 x0ð1� x=LÞ
P12 x0

P13 x0½1� BJ ðx=LÞ=ð1þ BJ Þ
P21 L� x
P22a ððx0Þ2 þ x2Þ=ð2LÞ � xþ L=3
P23 Lð1þ 1=BJ � x=LÞ
P31 ðBIx0 � BIx0x=Lþ L� xÞ=ð1þ BI Þ
P32 Lð1=BI þ x0=LÞ
P33 ðBIBJ x0 þ BIx0 � BIBJ x0x=L� BJxþ BJLþ LÞ�

ðBIBJ þ BI þ BJ Þ
a Special temperature solution needed with this pseudo GF.
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term, convergence in the series resulting from the sub-

stitution of Eq. (10) into Eq. (6) is controlled by the

smallest (negative) exponent in the numerator of Eq.

(24). For this reason, points on type 1 or 3 boundaries

are referred to as troublesome points because they result

in slowly convergent or divergent series due to one of the

exponentials becoming unity. Generally at the trouble-

some points the heat flux convergence is slower than that

for temperature (due to differentiation of the Fourier

series) and in many cases the series for heat flux diverges.

A technique that improves the temperature convergence

and allows for the evaluation of the heat flux, factoring

out lower-dimensional solutions, is presented in the next

section. For evaluation on type 2 boundaries the factor

pre-multiplying the ‘‘troublesome’’ exponential is zero

and such points are not considered troublesome.

5.1.1. Factoring out lower-dimensional solutions

At a non-troublesome point, the convergence of the

series is improved by noting that the integral of the

kernel function is of the formZ Li

0

Pðxi; x0iÞ dx0i ¼
1

b2
þ V ðb; xiÞ

¼
Z
P dx0i ðif type 2 on both xi facesÞ

þ V ðb; xiÞ; ð26Þ

where first term corresponds to the result if the sides at

xi ¼ 0 and xi ¼ Li had type 2 boundary conditions. For
any problem in this case, the boundary conditions on

those sides in the corresponding temperature problem

are homogeneous. Thus the first term corresponds to

insulation in the xi-direction. The resulting sum from
this term multiplied by the eigenfunctions in the xk
and xj directions is therefore the solution to the two-
dimensional problem in the xkxj-plane. Convergence is
improved if this two-dimensional problem is not calcu-

lated as a double summation, but rather as an equivalent

single summation with an eigenfunction in one direction

and a kernel function in the other [11]. At non-trou-

blesome points the convergence of the sum resulting

from multiplication of the eigenfunctions by the second

term in Eq. (26), V ðb; xiÞ, is controlled by the exponents
in the numerator. All of the exponents are negative and

the eigenvalues are increasing. Therefore the sum con-

verges fairly rapidly.

In an analogous fashion, if the kernel function in

the single-summation two-dimensional problem is not

placed in the x1-direction or if it is an internal generation
problem, the integral of the kernel function in the two-

dimensional problem will also have two terms, one of

which is a one-dimensional problem in the xk-direction.
This one-dimensional single-summation problem can be

evaluated as a closed-form polynomial to provide a large

reduction in computation time. Refer to [11] for a full

discussion of this procedure.

5.1.2. Example

Consider the temperature evaluated at a non-trou-

blesome point with a kernel function in the x3-direction
for the three-dimensional problem, a kernel function in

the x2-direction for the two-dimensional problem, and a
type 1 non-homogeneous boundary condition at x1 ¼ 0.
The temperature is given by

T ðxÞ ¼ f1
X1
n¼0

X1
p¼0

Xnðx1Þ
Nðk1nÞ

dXnðx01Þ
dx01

����
x0
1
¼0

�
Xpðx2Þ

R L2
0
Xpðx02Þ dx02

Nðk2pÞ

Z L3

0

Pnpðx3Þ dx03 ð27Þ

or after factoring out the lower-dimensional solution in

the x1x2 plane and then factoring out the one-dimen-
sional solution in the x1 direction:

T ðxÞ ¼ f1
X1
n¼0

X1
p¼0

Xnðx1Þ
Nðk1nÞ

dXnðx01Þ
dx01

����
x0
1
¼0

�
Xpðx2Þ

R L2
0
Xpðx02Þ dx02

Nðk2pÞ
V ðbnp; x3Þ

þ f1
X1
n¼0

Xnðx1Þ
Nxðk1nÞ

dXnðx01Þ
dx01

����
x0
1
¼0
V ðk2n; x2Þ þ T1Dðx1Þ;

ð28Þ

where T1Dðx1Þ is the temperature for the one-dimensional
problem in the x1-direction. The nine possible one-
dimensional temperature solutions are given in Table 6.

5.2. Solutions without integrals of the kernel function

If the boundary condition on side 1 is non-homoge-

neous of type 1 and a kernel function is placed in the

x1-direction then oP=ox01ðx1; 0Þ is needed as part of the
temperature solution

oP
ox01

ðx1; 0Þ ¼
ðSþ1 � S�1 ÞðS�2 e�bð2L1�x1Þ þ Sþ2 e�bx1Þ

2ðSþ1 Sþ2 � S�1 S�2 e�2bÞ
: ð29Þ

If the boundary condition on side 1 is non-homogeneous

of type 2 or type 3 and a kernel function is placed in the

Table 6

One-dimensional temperature solutions

Case T1Dðx1Þ
X11 f1ð1� x1=L1Þ
X12 f1
X13 f1ð1� ½B2=ð1þ B2Þx1=L1Þ
X21 f1

k ðL1 � x1Þ
X22a f1

k ðx21=ð2L1Þ � x1 þ L1=3Þ
X23 f1

k ðL1 þ L1=B2 � x1Þ
X31 f1

k ðL1 � x1Þ=ð1þ B1Þ
X32 f1

k L1=B1
X33 f1

k ðL1 � B2x1 þ L1B2Þ=ðB1 þ B2 þ B1B2Þ
a Constructed from the pseudo GF.
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x1-direction then Pðx1; 0Þ is needed as part of the tem-
perature solution

Pðx1; 0Þ ¼
ðSþ1 þ S�1 ÞðS�2 e�bð2L1�x1Þ þ Sþ2 e�bx1 Þ

2bðSþ1 Sþ2 � S�1 S�2 e�2bÞ
: ð30Þ

In either case, troublesome points are at x1 ¼ 0, regard-
less of the type of boundary condition and the lower-

dimensional solution cannot be factored out. Despite not

being able to factor out the lower-dimensional problem

placing the kernel function in the x1 direction may still be
preferable to other directions if it produces faster de-

caying exponential terms in the two-dimensional sum.

5.3. Solutions with derivatives: heat flux

Each component of the heat flux is found from a

derivative of the temperature, given by Eq. (6), through

Fourier’s law, Eq. (7). The required derivatives fall onto

the components of the GF given by Eq. (10). Thus,

calculating the components of the heat flux requires

finding a derivative of either a kernel function or an

eigenfunction with respect to the coordinate in the di-

rection of the heat flux component. This derivative de-

grades the convergence of each of the forms of the

summations by introducing another factor of the ei-

genvalue into the numerator of each of the summations.

However, it does not alter the relative convergence of

the different forms of the GF and the definition of

troublesome points remains the same.

6. Algorithm for temperature and heat flux

To calculate the temperature and heat flux at a point

in the parallelepiped there are six different forms of the

expression for temperature (and for each component of

the heat flux) depending on the directions chosen for the

kernel functions. After substituting Eq. (10) into Eq. (6),

and factoring out lower-dimensional solutions when

possible, the equation for temperature may be written

compactly as

T ðxÞ
H

¼
X1
p¼0

X1
n¼0

vpðxkÞvnðxjÞCðbnp; xiÞ

þ
X1
n¼0

vnðxkÞCðkni; xjÞð1� d1iÞ

þ T1DðxkÞð1� d1iÞð1� d1jÞ; ð31Þ

where d1i is the Kronecker delta function and where

v‘ðxmÞ ¼
X‘ðxmÞ
Nðkm‘Þ

�
X‘ð0Þ if m¼ 1 and s1 is type 1;
X 0
‘ð0Þ if m¼ 1 and s1 is type 2 or 3;R Lm
0
X‘ðx0mÞ dx0m otherwise:

8><
>: ð32Þ

The temperature scale H is given by

H ¼
g
k if internal generation;
f1 if s1 is type 1;
f1
k if s1 is type 2 or 3

8<
: ð33Þ

and

Cðg; x‘Þ ¼
P ðx‘; 0Þ if ‘ ¼ 1 and s1 is type 1;
oPðx‘;0Þ

ox0
‘

if ‘ ¼ 1 and s1 is type 2 or 3;
V ðg; x‘Þ otherwise:

8<
:

ð34Þ

The factor Cðg; x‘Þ is called the controlling factor and is
given explicitly in Eqs. (25), (29), and (30). The quantity

V ðg; x‘Þ is defined by Eq. (25). There are six different
forms for the GF that can be used in Eq. (31) depending

on the permutation of ð1; 2; 3Þ used for (i; j; k).
An algorithm was sought to choose the form of the

GF to give the most rapid convergence of the sums and

requiring the fewest possible terms for the computation

of the temperature and heat flux to a specified precision.

Convergence of the sums is primarily determined by the

exponents in the controlling factors. All of the expo-

nents consist of a non-positive constant multiplied by an

eigenvalue. The constants depend upon the location of

the point of evaluation relative to the sides of the par-

allelepiped perpendicular to the direction of the kernel

function. The constants are only zero at troublesome

points.

The eigenvalues increase with the indices of the sum-

mations. Therefore, the controlling factors decay quickly

and the resulting sum converges quickly if the eigen-

values increase rapidly. The eigenvalues in the control-

ling factors within double summations depend upon

the eigenvalues in the other directions through Eq. (14).

The eigenvalues in the other directions depend on the

boundary conditions, thermal properties, and the di-

mensions of the parallelepiped as per Table 4. This de-

pendence is either given by a simple algebraic expression

or a transcendental equation.

Because of the complicated dependencies of the ex-

ponents of the controlling factors on other aspects of the

problem, the following procedure was used to choose the

form of the GF. It was noticed that by about the fifth

eigenvalue the eigenvalues became well-ordered. That is,

if the fifth eigenvalue in one direction was larger than the

fifth eigenvalue in another direction, then the same was

true of all succeeding eigenvalues. Based on this obser-

vation a choice between the six different forms of the GF

could be made.

The form of the GF was chosen to require the fewest

terms in the double-sum portion of Eq. (31). For each of

the three possible directions of the kernel function in the

double sum, the smallest exponent of the controlling

factor was found using the fifth eigenvalue in the other

directions. The kernel function direction was chosen
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corresponding to the controlling factor with the largest

(negative) of these three exponents (with the intent to

choose the fastest-converging double sum).

If the single sum was needed ði 6¼ 1Þ, the direction of
the second kernel function was chosen in an analogous

manner. That is, it was placed in the direction that re-

sulted in a controlling factor whose smallest (negative)

exponent using the fifth eigenvalue was larger than the

smallest (negative) exponent of the controlling factor if

it was placed in the other direction.

Since the controlling factor for a particular direction

of kernel function in the expressions for the heat flux

components is found from the derivative of the tem-

perature expression, it has the same exponents. Thus the

directions chosen for the kernel functions used to find

the temperature are also used when computing the

components of the heat flux.

Troublesome points are only located on sides of the

parallelepiped and are caused by an exponent in the

controlling factor becoming zero. Therefore provided

the point of evaluation is not on an edge or corner of the

parallelepiped, the algorithm also automatically avoids

evaluation using a controlling factor with a troublesome

point. Temperatures and fluxes on edges and corners are

often not well defined and are not treated here. How-

ever, on edges and corners where the temperature and

flux are well defined the algorithm will give the correct

value. At any point inside or on a face of the parallel-

epiped, the algorithm picks a fast converging form of the

GF. The algorithm is summarized below:

0. Initialize temperature and heat flux components

1. Let side ¼ 0, 6 (0 for internal generation)
1.1 Rotate coordinates to place the non-homoge-

neous side at x1 ¼ 0
1.11 Pick the first kernel direction such that the

smallest exponent using the fifth eigenvalues is

as large as possible.

1.12 If a two-dimensional problem is to be fac-

tored out, pick the second kernel direction such

that the smallest exponent using the fifth eigen-

values is as large as possible.

1.3 Find the temperatures and flux components

1.4 Add the results to the temperatures and fluxes

in original coordinates

2. Process the next side

3. Print results

7. Numerical example

Various problems and geometries were used to test

the algorithm’s ability to find a fast converging form of

the GF. One of the test cases is given here in detail.

Additional information on the algorithm and the com-

puter program is given elsewhere [12]. The parallelepi-

ped was 3:0� 5:0� 1:0 with an internal volume
generation of 210 and a conductivity of 0.7. The units

could be taken to be any consistent set. The type of

boundary conditions, the boundary values, and con-

vection coefficients are summarized in Table 7.

Counting internal generation there were seven non-

homogeneities and therefore seven individual problems

to be solved, the results of which were superposed to

produce the final result. For the purposes of this ex-

ample, for each of the seven problems, the temperature

and all three components of the heat flux were calculated

at three different points using all six possible forms of

the GF. All possible combinations of forms of the GF

produced the same end results for the temperature and

the heat flux within the requested tolerance (1:0� 10�10)
and are given to nine significant figures in Table 8.

The temperature was computed using Eq. (31) in the

reverse order it is presented. In effect, the temperature

was first approximated as the one-dimensional temper-

ature in the xk direction and then adjusted to the two-
dimensional temperature in the xkxj plane and then
finally corrected to the desired temperature of the three-

dimensional problem. This order was found to improve

the convergence of all forms of the GF. The heat flux

components were computed in the same order.

The decision to terminate each individual sum was

only made at every fifth iteration. If the sum of the

absolute values of the last five terms divided by the

temperature computed thus far was less than the toler-

ance, then the sum was terminated. This same procedure

was used on the inner and outer sums of the double

summation. Specifically, if the sum of the absolute val-

ues of the last five terms of the inner sum divided by the

temperature calculated so far was less than the tolerance

then the inner sum was terminated and the index of the

outer sum was increased by one. The outer sum was

terminated when the sum of the absolute value of all the

terms added to the temperature from five iterations of

the outer index divided by the temperature was less than

the tolerance. In Table 9, the total number of series

terms needed to calculate the temperature and all three

components of the heat flux at each point is given. For

each row in the table, one entry is marked to indicate the

form of the GF selected by the algorithm presented

above.

Table 7

Test case boundary information

Side Type fi hi

1 3 100 6

2 2 200 –

3 1 50 –

4 3 150 30

5 1 10 –

6 2 300 –
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The coordinates given in Table 9 are the original

coordinates. The actual solution is found by first rotat-

ing the coordinate system to place the non-homoge-

neous side at x1 ¼ 0. The directions of successive kernel
functions are given in the rotated coordinates since that

is when the algorithm is applied. If the first kernel di-

rection is in the x1 direction and the result for internal
generation (side 0) is not being computed then there is

not a second kernel direction.

In Table 9, note that for some rows the worst choice

of directions for the kernel functions can require mil-

lions of terms, up to 7000 times more terms than the best

choice. Although the algorithm does not always pick the

best directions for the kernel functions, when it does err

it picks the second-best choice which is several orders of

magnitude better than the worst choice. There are var-

ious reasons the algorithm does not always pick the best

possible form of the GF: the way the tolerance criteria

was used; the order in which the double sum was com-

puted; whether the location of evaluation was near a null

of an eigenfunction; and the way Eq. (31) was used.

Computing the temperature (and fluxes) as first a

one-dimensional problem then adjusting it to the two-

dimensional problem and the three-dimensional prob-

lem improves the convergence of some forms of the

GF more than others. The choices of the directions of

the kernel functions determines which one-dimensional

and two-dimensional solutions are used. If a lower-

dimensional solution closely approximates the next

higher-dimensional solution then fewer terms of the

higher-dimensional solution’s sum are needed. How

well a lower-dimensional solution approximates the next

Table 9

Total number of series terms required for temperature and heat flux

Heated side Direction of kernel functions

x1; x2 x1; x3 x2; x3 x2; x1 x3; x1 x3; x2

(a) Evaluated at x1=L1 ¼ :02, x2=L2 ¼ 0:9, x3=L3 ¼ 0:5
0 26,687 33,102 1782a 1872 5417 4732

1 81,255 93,385 2431a 2620 8075 6746

2 330a 950 3152 3025 9145 15,462

3 260 645a 163,322 162,060 13,740 15,462

4 1975 3225a 69,597 69,430 7625 8842

5 7690 8970 2121 1930a 72,340 72,171

6 6070 7180 1807 1665a 46,000 45,842

(b) Evaluated at x1=L1 ¼ 0:5, x2=L2 ¼ 0:02, x3=L3 ¼ 0:9
0 622 1502a 11,457 11,417 2257 2522

1 635 1705a 27,821 27,760 3220 3692

2 570 1580a 24,122 24,060 3220 3692

3 25,030 30,215 1197a 1310 3775 3267

4 260a 630 1532 1380 5040 5102

5 3350 4055 23,051 23,105 670a 786

6 67,965 58,245 12,992 13,410 1275 652a

(c) Evaluated at x1=L1 ¼ :9, x2=L2 ¼ 0:5, x3=L3 ¼ 0:02
0 342a 4072 1867 492 432,282 432,272

1 370a 1015 3781 565 2,241,815 2,241,806

2 6115 10,880 2947 555a 1,064,340 1,064,057

3 325 765 7087 730a 2,192,560 2,192,577

4 325 765 6317 730a 1,705,080 1,705,097

5 2,092,815 2,454,975 341 3245 6390 356a

6 2640 3205 337 390 465 362a

aDirection selected by algorithm.

Table 8

Temperature and heat flux at three points

x1=L1 x2=L2 x3=L3 T qx qy qz

0.02 0.9 0.5 56.9918775 )149.509509 35.5070857 )60.4939038
0.5 0.02 0.9 131.376455 )5.57720000 )519.370005 )153.387409
0.9 0.5 0.02 28.9540610 )8.26653408 .0242271805 )661.107672
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higher-dimensional solution is not taken into account in

the algorithm and this is the chief reason the algorithm

at times does not pick the best order of directions for the

kernel functions.

Terminating the sums only at every fifth term re-

sulted in five terms being the smallest possible difference

in the number of terms required by two different single

sums and 25 terms being the smallest possible difference

in the number of terms required by two different double

sums. Thus small differences in the number of terms

required are not that meaningful and could be reduced

by using a different stopping criteria. It also would be

more efficient to add up the terms of the double sum

diagonally. That is, first adding all the terms whose in-

dices sum to 1 then all of the terms whose indices sum to

two, etc.

Another factor not taken into account is if the point

of evaluation is near the null of an eigenfunction then as

much as every other term may be close to zero for some

choice of kernel function directions.

To evaluate the impact of the accuracy desired on the

number of terms required, the temperature and three

components of the heat flux for the same test case were

also computed at 1000 equally spaced points throughout

the parallelepiped for three values of accuracy. The

number of terms required for all of the accuracies re-

quested are summarized in Table 10. To compute all of

the values, with a requested accuracy of 1:0� 10�10, it
took a total of 16,113,320 terms including 15,240,040

terms from double sums, 853,280 terms from single sums

and 20,000 one-dimensional solutions. Since in all there

were 1000 points, four values computed per point, and

seven non-homogeneities per value, this means that on

average each time a single sum was used it required 30

terms to converge and each time a double sum was used

it required 544 terms to converge, which is about 24 it-

erations of the inner and outer sum. Regardless of the

accuracy requested, 20,000 one-dimensional solutions

were used for the 1000 points.

8. Summary

In this paper the method of Green’s functions has

been applied to steady heat conduction in the parallel-

epiped. A total of 36 ¼ 729 different combinations of
boundary conditions are treated for boundaries of types

1, 2, and 3. Alternative forms of each GF are given that

may be used to compute numerical values rapidly and

accurately anywhere in the parallelepiped. The use of

lower-dimensional solutions improves series conver-

gence and provides a convergent series for heat flux on

type 1 boundaries. A detailed algorithm is described for

computation of the temperature and heat flux efficiently

and accurately anywhere in the parallelepiped or on its

faces when the heating effects are spatially uniform.

Numerical examples are given.
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Appendix A. Derivation of Kernel function

Consider a kernel function placed in the x1-direction.
Suppressing the subscripts on P and x, the kernel

function satisfies the boundary value problem

d2P
dx2

� b2P ¼ �dðx� x0Þ; 0 < x < L; ðA:1Þ

ki
oP
oni

þ hiP ¼ 0; i ¼ 1; 2: ðA:2Þ

The homogeneous solution to Eq. (A.1) is

P h ¼ Ae�bx þ Bebx: ðA:3Þ

Assuming the particular solution is of the form

P p ¼ u1e�bx þ u2ebx ðA:4Þ

then

u1 ¼
Z
ebxdðx� x0Þ
W ðe�bx; ebxÞ ¼

ebx
0

2b
Uðx� x0Þ;

u2 ¼ �
Z
e�bxdðx� x0Þ
W ðe�bx; ebxÞ ¼ � e

�bx0

2b
Uðx� x0Þ;

ðA:5Þ

where Uðx� x0Þ is the Heaviside function and W ðe�bx;
ebxÞ ¼ 2b is the Wronskian. Therefore the general solu-
tion is

Table 10

Number of terms needed depending on accuracy requested

Accuracy Total terms for 1000 points Average terms of each double sum Average terms of each single sum

1:0� 10�10 16,113,320 544 ð24� 24Þ 30

1:0� 10�7 11,701,800 392 ð20� 20Þ 25

1:0� 10�4 8,453,340 281 ð17� 17Þ 21
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Pðx; x0Þ ¼ Ae�bx þ Bebx þ e
�bðx�x0Þ � ebðx�x0 Þ

2b
Uðx� x0Þ:

ðA:6Þ

Applying the boundary condition at x ¼ 0 with a general
(type 3) boundary condition gives

A ¼ k1b � h1
k1b þ h1

B ¼ Lb � B1
Lb þ B1

B � S�1
Sþ1
B: ðA:7Þ

Applying the boundary conditions at x ¼ L (after careful
algebraic manipulation) yields

B ¼ Sþ1 ðS�2 e�bðL�x0Þ þ Sþ2 e�bðL�xÞÞ
2bðSþ1 Sþ2 ebL � S�1 S�2 e�bLÞ ; ðA:8Þ

A ¼ S�1 ðS�2 e�bðL�x0Þ þ Sþ2 e�bðL�xÞÞ
2bðSþ1 Sþ2 ebL � S�1 S�2 e�bLÞ : ðA:9Þ

Substituting Eqs. (A.8) and (A.9) into the general solu-

tion, Eq. (A.6) yields

DðbÞP ðx; x0Þ ¼ S�1 S
�
2 e

�bL½ðe�bðx�x0ÞÞð1� Uðx� x0ÞÞ

þ e�bðx0�xÞUðx� x0Þ þ Sþ1 Sþ2 ebL

� ½ðebðx�x0 ÞÞð1� Uðx� x0ÞÞ

þ ebðx0�xÞUðx� x0Þ þ S�1 Sþ2 ebðL�x�x
0Þ

þ Sþ1 S�2 e�bðL�x�x0Þ ðA:10Þ

or

DðbÞP ðx; x0Þ ¼ S�1 S
�
2 e

�bðL�jx�x0 jÞ þ Sþ1 Sþ2 ebðL�jx�x0 jÞ

þ S�1 Sþ2 ebðL�x�x
0Þ þ Sþ1 S�2 e�bðL�x�x0Þ;

ðA:11Þ

where

DðbÞ ¼ 2bðSþ1 Sþ2 ebL � S�1 S�2 e�bLÞ: ðA:12Þ

Therefore the general solution may be written in a form

suitable for computation as

P ðx; x0Þ ¼ S�2 ðS�1 e�bð2L�jx�x0 jÞ þ Sþ1 e�bð2L�x�x0ÞÞ
2bðSþ1 Sþ2 � S�1 S�2 e�2bLÞ

þ S
þ
2 ðSþ1 e�bð x�x0j jÞ þ S�1 e�bðxþx0ÞÞ
2bðSþ1 Sþ2 � S�1 S�2 e�2bLÞ

: ðA:13Þ
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